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Many current and future space missions use microchannel plate (MCP) detectors with delay line anode
readouts (e.g. FUSE, GALEX and the FUV detector on the upcoming Cosmic Origins Spectrograph (COS)
on the Hubble Space Telescope). Delay line anodes are used to measure the position of the centroid of the
charge clouds that exit MCP detectors.  This is accomplished by measuring the time difference between the
arrival of the pulse at both ends of the delay line.  The spatial resolution of this position determination is
dependent on the accuracy of the temporal measurement. These high frequency pulses (~100MHz) are
usually amplified and directed to constant fraction discriminators (CFDs) whose output pulses start and
stop a time to amplitude converter (TAC).

This paper reviews the optimization of these circuit elements. It includes the characteristics of various
delay line types (serpentine and  helical) and their effect on pulse shape. The choice of amplifier filter
bandpass and optimum fraction and delay for the CFDs is also presented. Examples are taken from the
MCP detectors on the missions mentioned above.

Keywords:   Microchannel plates, UV detectors, constant fraction discriminators, delay line anodes.

1. INTRODUCTION

Microchannel plate detectors with delay line anodes as the photon event readout are employed on many
current and future space missions such as UVCS and SUMER on SOHO1, FUSE2, Spectrographic Imager
on Image3, GALEX4, and COS5 to be installed on Hubble in 2003.  Delay line anodes6,7 detect the location
of the incident event by the arrival time difference of the MCP output charge pulse at each end of the
anode. MCP detectors of this type have been able to achieve spatial resolutions less than 25 µm FWHM5

over a dimension of 85 mm and can operate at count rates greater than 100kHz8. However, to achieve these
results in a single detector requires the careful optimization of the readout electronics used to time the
pulses from the anode.  This paper will start with a simplified discussion of the readout electronics and how
they work and then theoretically derive some optimization parameters for an ideal case.  These parameters
can then be used as “starting points” for further empirical optimization when confronted with signals from
real anodes and electronics for which examples are given from the COS and GALEX detectors.

1.1  Delay Line Anodes

When a charge pulse from an MCP set impinges at a specific position on a delay line anode, the pulse splits
in two and travels in both directions along the delay line.  The time difference between the time of arrival of
each pulse at both ends of the anode is linearly proportional to the original position on the anode and
inversely proportional to the velocity of propagation of the pulses in that dimension.  To minimize the error
in the determination of the position (i.e. optimize spatial resolution) one must decrease the velocity of
propagation as much as possible and minimize the timing error of both pulses. The geometry, layout and
materials of the of the delay line determine the velocity of the pulses while the timing error is usually
determined by the pulse sensing electronics. The two are not completely independent, however, as certain
choices of very slow delay line patterns can adversely affect the pulse shape which in turn increase the
timing error. Typical delay line velocities are on the order of 1 mm ns-1 while output pulses are about 5 ns
wide.  Therefore to achieve a spatial accuracy of 25µm requires that the measurement of the arrival time of
this 5ns pulse be accurate to 25ps.
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The Experimental Astrophysics Group at the Space Science Laboratory, University of California,
Berkeley, has used an assortment of delay line patterns to collect the MCP charge pulses.  “Serpentine” and
“Helical” delay lines refer to a single or multi-planar delay line patterns, respectively (Fig 1). When used as
actual anodes, they are usually connected to conducting “strips” so that the delay line is separated from the
active charge collection region.  Examples of this are: the “Double Delay Line or DDL7” where the strips
are wedges and the orthogonal coordinate is determined by a charge division scheme between the wedges;
and the Cross Delay Line or XDL, where two orthogonal sets of fingers cover the active charge collection
region and each set is connected to a delay line (of either type).  A hybrid scheme (used in COS on Hubble)
uses a helical delay line directly to encode one dimension (no strips) while the other dimension uses strips
and a small helical delay line.  The choice of anode pattern is usually based on size of detector, the
resolution requirement in each dimension, and the cost and reliability of the fabrication techniques.

Serpentine Helical    Double 
Delay Line 

XDL

Figure 1. Delay Line nomenclature. The Serpentine is a planar zig-zag pattern while the Helical is multi-planar pattern
where the dotted lines represent the opposite side of a 3 level structure. There is a ground plane in between the two
levels and the top and bottom patterns are connected by vias.  The Double Delay Line (DDL) and Cross Delay Line
(XDL) are delay line anode patterns where the charges collected on  strips which are tapped into the delay lines, which
can be serpentine or helical.  The DDL anode uses a charge division scheme to measure the orthogonal axis.

The impact of delay line choice on the timing electronics is the effect that it has on the pulse shape.
Both helical and serpentine delay lines are not perfect transmission lines and do not have a linear phase
characteristic essential to avoid pulse dispersion, preshoot and ringing  Pulses widen as they traverse the
delay line and lose amplitude. Most of this is due to capacitive and inductive coupling along the delay line.
When unterminated strips are attached at every bend in the delay line, as in the DDL or XDL anodes, a
fraction of each pulse must travel down these strips to be reflected back into the pulse but at a later time
dependent on strip length.  These strips act as resonance filters and tend to slow the velocity and widen the
pulse. Figure 2 shows examples of two different pulse shapes exiting a helical and serpentine delay line.

1.2  Timing Electronics

A simple schematic of the one dimensional delay line readout electronics is shown in Figure 3. Pulses from
each side of the anode (~ 10 mV, 5ns wide) are amplified, high and low pass filtered and then sent to a
Constant Fraction Discriminator (CFD).  The CFDs produce the ECL logic pulses to start and stop a Time
to Amplitude Converter (TAC) which outputs an analog voltage pulse whose amplitude is proportional to
the time difference of the start and stop signals. This pulse is then digitized and represents the pixel location
of the input pulse.  Since the delay lines are usually symmetric, the start and stop designations are arbitrary
until an extra delay is added on the stop side to ensure that start always comes before stop for a given pulse.
The added delay on the stop side can either be before or after the CFD.  We usually add the delay after the
CFD with a compact lumped-delay circuit.  The lumped delay can degrade the pulse shape, however this is
not much of a concern for a large ECL pulse.  The alternative is to add an extra length of low dispersion
cable to the input to the stop CFD, but this is a very bulky implementation when the delays of the anode are
on the order of a hundred nanoseconds.



Figure 2.  Example pulse shapes.  The left oscilloscope trace is an amplified and filtered pulse out of a helical delay
line while the right oscilloscope trace is from a serpentine XDL anode. Note the faster leading edge on the helical pulse
and the faster trailing edge on the XDL pulse.
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Figure 3.  Simple schematic of delay line timing electronics.

1.2.1 Amplifiers and Filters

High bandwidth, low noise amplifiers are necessary for delay line anodes to get the best timing
performance. However, filters must be added to optimize the pulse shape for the downstream CFDs (see
below).  The choice of the filter depends again on the pulse shape.  Typically a 100MHz, Chebyshev filter
is used for its sharp high frequency cutoff while a simple RC filter is used for the low frequency.  The
linearity of the amp is also important; not only for the dynamic range of the MCP pulses due to wide pulse
height distributions, but also large dispersion in the anode.  A factor of 3 in pulse height range and a factor
of 2 in amplitude caused by dispersion results in a dynamic range of 6 for which the amplifier must be
linear.  Amplifier non-linearities can result in amplitude dependent timing errors.

1.2.2  Constant Fraction Discriminators

The heart of the timing circuit is the CFD.  Its purpose is to detect an input analog pulse and generate a fast
logic pulse with a constant fixed offset in time with respect to the pulse.  This temporal offset should not be
a function of pulse amplitude (so called “walk”). The CFD does this by subtracting a delayed version of the
pulse from a fraction of the pulse (Fig 4), though there are other techniques9,10.  When the result of the
subtraction crosses zero, the logic pulse is generated (Fig. 5) and the time of the zero crossing is
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independent of the pulse amplitude. The choice of the fraction, F, which can be greater or less than 1, and
the delay, t0, is the main method of optimizing the CFD with respect to the amplified anode pulse.
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Figure 4.  Oversimplified schematic of a CFD.  The pulse into the  + input of the comparator is multiplied by the
fraction F, while the pulse into the - input is delayed by a time t0. Not shown is the threshold trigger circuit, the
impedance matching, the walk adjustments and the layout details, all of which are important to minimize timing error.
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Figure 5.  Simulated pulse in circuit of Fig. 4.  V(t) is the arbitrary input pulse, F is the fraction and t0 is the delay. The
comparator will trigger when the attenuated input pulse crosses its delayed twin.

1.2.3 Time to Amplitude Converter and ADC

The TAC creates a voltage pulse whose amplitude is proportional to the difference in arrival time between
the start and stop pulses. A very simplified description of how this works is by integrating a constant
current source on a high quality capacitor where the start and stop pulses start and stop the integration,
respectively.  Though the TAC and the ADC are key parts of the readout electronics, their optimization is
not truly dependent on the delay line or pulse shapes and therefore are outside the scope of this paper and
will not be discussed. However, much work has gone into improving the TAC for delay line use.  In
particular, preserving the timing accuracy as the input pulse rate increases beyond 100kHz8.

2. OPTIMIZATION OF THE ELECTRONIC FRONT END

Given an arbitrary pulse shape that comes out of the amplifier, what is the best choice for the delay and
fraction of the CFD?  This section presents a derivation of the optimum choice of these two parameters
assuming the CFD behaves ideally as shown in Figs. 4 and 5 and the pulse is well behaved.  These
optimum values should be considered as starting points in the empirical search for the true optimum values
with real electronics and real pulses; examples of which are shown in the following section.



2.1  Choice of Fraction in “Constant Fraction”

Let V(t) represent the input voltage pulse as an (arbitrary) function of time. Let G(t) be the difference
between this pulse, multiplied by the fraction, F, and its delayed image V(t-t0):

G (t) = FV (t) − V (t − t0 ) (1)
G(t) represents the voltage difference between the two comparator inputs. The zero crossing comparator
changes logic state when the function G crosses zero at time T, and it is this digital logic signal which is
used downstream in the electronics to time the pulse.  This zero crossing time is independent of the
amplitude of V(t).  However, noise fluctuations of V(t) (and therefore G(t)) will cause a corresponding

timing noise in the zero crossing time. Let σt, σG ,and σV be the error in the zero crossing time, T,  the
difference signal, G(t), and the voltage pulse, V(t) respectively. Then

σ t
=

σ G

dG (t) / dt T

(2)

where the slope of G is analyzed at T. Assuming the noise variance in V(t) is the same a time t0 later,
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The assumption that the voltage noise is uncorrellated over a time, t0, is true for the higher frequency
noise components which are the dominant contributor.  For the lower frequency noise, (ν << 1/t0), the
difference circuit effectively removes the noise contribution, acting as a high pass filter. Now substituting
this result, along with the following identity, into the equation for σt :
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We want to optimize the choice of the constant fraction, F, to minimize the error in the time
determination, σt.  We therefore differentiate σt with respect to F and set it equal to zero.
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This equation must be analyzed at the crossing time, T.  dV(T)/dt is just the slope of the trailing edge
of the unattenuated prompt pulse while dV(T-t0)/dt is the slope of the leading edge of the delayed pulse,
both analyzed at the crossing time.  The equation simply states that the optimum fraction for an arbitrary
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pulse shape is the ratio of the slopes at the zero crossing time.  The fraction can be either greater or less
than 1.0.  The optimum fraction for a symmetric pulse (e.g. gaussian shape) is 1.0.  Controlling the fraction
value allows one to weight the edge with the greater signal to noise ratio, where the signal in this case is a
steep slope.

2.2  Choice of Delay

The choice of CFD delay is usually done first, before the fraction, since to determine the optimum fraction
the crossing point must be known.  We are discussing this parameter second to use the equations already
derived.  Using the equation for σt above, the optimum delay, t0, is derived by differentiating the equation
with respect to t0.  However, t0 is embedded in the pulse shape V(t-t0), which has been arbitrary up to this
point.  The choice of the optimum delay is therefore dependent on the exact pulse shape.  A simple example
is a triangular shaped pulse.   The numerator and denominator of equation (10) stay fixed for a wide range
of t0, where the leading and trailing edges cross, and all these choices of t0 are optimum.

A more illustrative example would be a symmetric, gaussian shaped pulse:

V (t ) = exp −t 2 / 2σ 2( ) (11)

Differentiating σt with respect to t0 and setting the result to zero, produces:
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This last equation must be analyzed at the zero crossing time, T.  In this example of a symmetric pulse
shape, the crossing time is just t0/2 so substituting this for t gives the optimum delay for a symmetric,
gaussian shape:

t 0
= 2σ

This delay is slightly shorter than the FWHM of a gaussian pulse (= 2.355σ) and corresponds to having the
pulse cross itself at its inflection points where the slope is greatest.  This then confirms the common sense
approach to choosing a delay for any shape pulse by having the steepest parts of the leading and trailing
edges cross.

3. REAL SIGNAL COMPLICATIONS

3.1  Dispersion and Pulse Shape

As mentioned above, the helical and serpentine delay lines suffer from dispersion. Dispersion makes the
optimization of the CFDs difficult since one single pulse shape can’t be assumed. Not only do the pulses
get wider with dispersion, but also the ratio of the slopes of the leading and trailing edges change. Figure 6
is an oscilloscope trace of both the start and stop pulses (amplified) from the helical cross delay line of
COS (the long helical dimension without the fingers). In this case the event was located near the start side,
so the start pulse leaves the anode quickly without traversing much of the delay line. The pulse is clean and
narrow. The stop pulse appears ~70 ns later, wider and with less amplitude and with a leading precursor
wiggle.
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If the delay and fraction for the CFD is chosen based on the average pulse from the anode, the
resolution would be best at the center of the anode and would degrade towards the ends, since both the
prompt pulse wold be narrower and the delayed pulse would be wider. We combat this effect by bandpass
filtering the pulses to make the pulses from throughout the anode appear more uniform.  This can slightly
degrade the best performance in the anode middle, but greatly improve the resolution at the ends

The particular example of Fig. 6 uses both a low pass filter to decease the amplitude of the leading
precursors so as to not start false triggers of the CFD as well as a high pass filter to remove the lower
frequency pulse tails (hence the bipolar nature of the pulses). Again, optimum choice of the exact filter
values depends on the shape of the raw anode pulse.  Smaller anodes can have very good dispersive
qualities and the filtering can be minimal with fraction and delay given by the equations above. The large
anodes used by COS, GALEX, and FUSE required an intensive empirical optimization effort to match the
anode characteristics with the electronics using the filters and CFD settings.

Figure 6.  Anode dispersion. Oscilloscope trace of both start (bottom) and stop (top) outputs from a single event near
the start side of the anode.  The prompt pulse leaves the anode mostly unaffected while the delayed pulse shows the
effects of dispersion: increased width and decreased amplitude.  Note the reflection of the stop signal appearing on the
start trace 140-180 ns after the start signal has left the anode.

3.2 Reflections and Baseline Disturbance

Every attempt is made in designing the anode pattern to keep the delay line transmission line characteristic
impedance at 50�. However, given the tolerances of the various dielectric layers and line widths, it is rare
to match 50� exactly.  When coupling to a 50� feedthrough and cable, reflections of the pulses occur
which can disrupt the baseline. This normally would not be a problem, as a reflection from a start pulse
leaving the anode would not catch up with the stop pulse going the other way.  Unfortunately, given the
dispersion of the helical anodes, higher frequency components of the reflection can race ahead (at low
amplitude) and get to the anode output before the real pulse. This disturbance is too small to trigger the
CFDs but it does disrupt the baseline and can affect the pulse shape of the real pulse and therefore the
position of the event. The signature of this effect is a non-linearity in the measured position vs. the true
position and can be observed in a modulation of the detector flat field as well as resolution mask patterns.
The velocity differences are slight enough that this is only a problem for long anodes and events that occur
near the ends. Fig. 6 shows a baseline disturbance due to the reflection of the start signal. To ameliorate this
effect requires a better impedance match, less dispersion, or separating the active area of the anode away
from the reflective interfaces by increasing the total anode length or decreasing its active field of view.



3.3 Amplifier Non-Linearity

Another real world effect that can degrade resolution for a delay line detector are amplifier non-linearities.
If the amplifier is non-linear, the pulse shape will be different for pulses with the same shape but different
amplitudes.  This will result in different zero crossing times in the CFDs for different amplitudes.  Figure 7
is an oscilloscope trace of two pulses from the same amplifier, with  the input amplitude different by 10db.
(To keep the signals in the same range for the oscilloscope, the same 10 dB attenuator was move from the
input to the output of the amplifier). This effect is not seen in the center of the anode because the shift in
time would be the same for both start and stop since they would be of the same amplitude and therefore the
shift would subtract out using start - stop. But at the ends of the anode, where the dispersoin effect is
greatest, a single event would have the start amplitude apprecialbly different than the stop amplitude and
the resultant postion determined would depend on amplitude, especially at the higher pulse heights where
the amplifier non-linerites are at their worst. Again, to defeat this effect, use low dispersion anodes, operate
in the linear regime of the fast amplifiers and use MCPs with narrow pulse height distributions,

Figure 7.  Oscilloscope traces of two pulses out of a fast amplifier.  In one case a 10 dB attenuator was place on the
input of the amp while in the second case the same attenuator was placed on the output of the amp. The amplifier in this
case is being overdriven and has a non-linear response which results in a different zero crossing.
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